Hemolysis of Human Erythrocytes by a Transient Electric Field
Abstract
Exposure of human erythrocytes, under isotonic conditions, to a high voltage pulse of a few kV/cm leads to total hemolysis of the red cells. Experiments described herein demonstrate that the hemolysis is due to the effect of electric field. Neither the effect of current nor the extent of the rapid Joule-heating to the suspending medium shows a direct correlation with the observed hemolysis. Voltage pulsation of the erythrocyte suspension can induce a transmembrane potential across the cell membrane and, at a critical point, it either opens up or creates pores in the red cells. In isotonic saline the pores are small. They allow passage of potassium and sodium ions but not sucrose and hemoglobin molecules. The pores are larger in low ionic conditions and permit permeation of sucrose molecules, but under no circumstances can hemoglobin leak out as the direct result of the voltage pulse. Kinetic measurements indicate that the hemolysis of the red cells follows a stepwise mechanism: leakage of ions leads to an osmotic imbalance which in turn causes a colloidal hemolysis of the red cells. Other effects of the voltage pulsation are also discussed.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- May 1977
- DOI:
- Bibcode:
- 1977PNAS...74.1923K