An approach to pattern operations on a twodimensional iterative network  A system of operations of local functions
Abstract
This paper explores the basic properties of a twodimensional iterative network with binary input and output such that (1) the set of all local functions which represent a mapping from input to output forms a Boolean algebra, (2) an arbitrary local function can be represented by a function which corresponds to shifting of the input to each cell, and (3) a composite function of arbitrary local functions can be represented by a Boolean algebra of functions corresponding to shifting. Based on this exploration, it is shown that a system of operations consisting of Boolean operations of local functions and composite operations of local functions can clearly describe the procedure necessary for pattern operations on a twodimensional iterative network.
 Publication:

Electronics Communications of Japan
 Pub Date:
 August 1977
 Bibcode:
 1977JElCo..60...27Y
 Keywords:

 Algorithms;
 Boolean Functions;
 Image Processing;
 Iterative Solution;
 Matrices (Circuits);
 Network Synthesis;
 Pattern Recognition;
 Binary Data;
 Logic Circuits;
 Recursive Functions;
 Shift Registers;
 Signal Processing;
 Electronics and Electrical Engineering