Glycosylation of hemoglobin in vitro: affinity labeling of hemoglobin by glucose-6-phosphate.
Abstract
To determine the mechanism for the formation of hemoglobin A1c (Hb A1c) in vivo, we incubated human hemoglobin with glucose and metabolites of glucose. [14C]Glucose-6-phosphate (G6P) reacted readily with deoxyhemoglobin, and formed a covalent linkage. The reaction rate was considerably reduced in the presence of carbon monoxide or 2,3-diphosphoglycerate (2,3-DPG). Purified G6P hemoglobin had a lowered oxygen affinity and decreased reactivity with 2,3-DPG compared to Hb A. G6P behaved as a 2,3-DPG analog and reacted specifically at the NH2-terminal amino group of the beta chain. In contrast, the interaction of hemoglobin with glucose was much slower, and was unaffected by carbon monoxide or 2,3-DPG. Neither glucose-1-phosphate, fructose-6-phosphate, nor fructose-1,6-diphosphate formed a reaction product with hemoglobin. G6P behaves as an affinity label with the phosphate group forming electrostatic bonds at the 2,3-DPG binding site and the aldehvde group reacting with the NH2-terminal amino group of the beta chain. Thus, G6P hemoglobin may be an intermediate in the conversion of Hb A to Hb A1c.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- October 1976
- DOI:
- Bibcode:
- 1976PNAS...73.3534H