An Intermediate Matching Technique for Solving Two Point Boundary Value Problems Using the Perturbation Method
Abstract
The perturbation method, a numerical method for solving two point boundary value problems (TPBVP), is modified to attempt to improve inherent instability and sensitivity problems associated with the method. The desired solution to the TPBVP is divided into two time intervals. The differential equations required to define a solution to the two point boundary value problem are integrated independently over these shorter segments rather than consecutively over the entire trajectory. The independent integration of the differential equations over approximately half of the trajectory instead of the entire trajectory substantially decreases sensitivity and stability properties associated with the numerical integration. The equations for both time segments can be integrated simultaneously. By this procedure, a system of twice the dimension of the original problem is integrated for a period of time equal to half of the time interval for the original problem. To show the effectiveness of the method, two impulse trajectories which minimize the total velocity increment required to transfer a spacecraft from an Earth orbit into a lunar orbit are calculated.
 Publication:

Celestial Mechanics
 Pub Date:
 March 1972
 DOI:
 10.1007/BF01229520
 Bibcode:
 1972CeMec...5..174W