Exact Results in the Kondo Problem. II. Scaling Theory, Qualitatively Correct Solution, and Some New Results on OneDimensional Classical Statistical Models
Abstract
The simplest Kondo problem is treated exactly in the ferromagnetic case, and given exact bounds for the relevant physical properties in the antiferromagnetic case, by use of a scaling technique on an asymptotically exact expression for the groundstate properties given earlier. The theory also solves the n=2 case of the onedimensional Ising problem. The ferromagnetic case has a finite spin, while the antiferromagnetic case has no truly singular T>0 properties (e.g., it has finite χ).
 Publication:

Physical Review B
 Pub Date:
 June 1970
 DOI:
 10.1103/PhysRevB.1.4464
 Bibcode:
 1970PhRvB...1.4464A