Gravitational Radiation and the Motion of Two Point Masses
Abstract
The expansion of the field equations of general relativity in powers of the gravitational coupling constant yields conservation laws of energy, momentum, and angular momentum. From these, the loss of energy and angular momentum of a system due to the radiation of gravitational waves is found. Two techniques, radiation reaction and flux across a large sphere, are used in these calculations and are shown to be in agreement over a time average. In the nonrelativistic limit, the energy and angular momentum radiation and angular distributions are expressed in terms of time derivatives of the quadrupole tensor Q_{ij}. These results are then applied to a bound system of two point masses moving in elliptical orbits. The secular decays of the semimajor axis and eccentricity are found as functions of time, and are integrated to specify the decay by gravitational radiation of such systems as functions of their initial conditions.
 Publication:

Physical Review
 Pub Date:
 November 1964
 DOI:
 10.1103/PhysRev.136.B1224
 Bibcode:
 1964PhRv..136.1224P