GravitationalElectromagnetic Coupling and the Classical SelfEnergy Problem
Abstract
The gravitational effect on the classical Coulomb selfenergy of a point charge is calculated rigorously. It is shown that the total mass then becomes finite (although still quite large), and that it depends only on the charge and not on the bare mechanical mass. Thus, a particle acquires mass only when it has nongravitational interactions with fields of nonzero range. In order to treat this problem, it is necessary to extend the canonical formalism, previously obtained for the free gravitational field, to include coupling with the Maxwell field and the point charge system. It is shown that the canonical variables of the gravitational field are unaltered while those of the matter system are natural generalizations of their flat space forms. The determination of the total energy of a state can still be made from knowledge of the spatial metric at a given time. The selfmass of a particle is then the total energy of a pure oneparticle state, i.e., a state containing no excitations of the canonical variables of the Maxwell or Einstein fields. Solutions corresponding to pure particle states of two like charges are also obtained, and their energy is shown consistent with the oneparticle results.
 Publication:

Physical Review
 Pub Date:
 October 1960
 DOI:
 10.1103/PhysRev.120.313
 Bibcode:
 1960PhRv..120..313A