Radiation-balanced silica fiber laser
Abstract
In optically pumped lasers, heat generated by the quantum defect causes detrimental fluctuations in the output mode, frequency, and power. Common heat-mitigation techniques use bulky mechanical coolers that introduce vibrations, leading to laser frequency and amplitude noise. Here, we present a radiation-balanced fiber laser, optically cooled by anti-Stokes fluorescence (ASF). The gain medium is a silica fiber with a 21-µm-diameter core doped with 2.06 wt. % Y b 3 + and co-doped with A l 2 O 3 and F- to reduce concentration quenching. The laser was core-pumped at 1040 nm to create both gain at 1065 nm and ASF cooling at atmospheric pressure. We demonstrate a maximum output power of 114 mW with a slope efficiency of 41% while maintaining near-zero average temperature change. This result could enable the development of fiber lasers with unprecedented coherence and stability.
- Publication:
-
Optica
- Pub Date:
- June 2021
- DOI:
- Bibcode:
- 2021Optic...8..830K