Observation of the interplay between seeded and self-seeded nondegenerate four-wave mixing in cesium vapor
Abstract
Nondegenerate four-wave mixing (NFWM) is a practical and effective technique for generating or amplifying light fields at different wavelengths, and could be used to create color correlation and entanglement. Here we experimentally investigate the NFWM process in diamond atomic system via two-photon excitation with two pumps at 852 nm and 921 nm, demonstrating that a seeded NFWM with a third laser at 895 nm and two self-seeded NFWMs due to amplified spontaneous emission (ASE) occur simultaneously. We compare the two kinds of processes and show that the single- and two-photon detunings hold the key role in distinguishing them. As a result, the enhancement of seeded NFWM is obtained by selecting large one- and two-photon detunings, in which case the ASE induced self-seeded NFWM can be largely suppressed. In contrast, the ASE and its induced NFWM are effectively achieved with one- and two-photon resonant excitations allowing for population inversion for efficient ASE.
- Publication:
-
Optics Express
- Pub Date:
- June 2020
- DOI:
- Bibcode:
- 2020OExpr..2817723Z