Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy
Abstract
Two-dimensional electronic spectroscopy (2DES) reveals connections between an optical excitation at a given frequency and the signals it creates over a wide range of frequencies. These connections, manifested as cross-peak locations and their lineshapes, reflect the underlying electronic and vibrational structure of the system under study. How these spectroscopic signatures evolve in time reveals the system dynamics and provides a detailed picture of coherent and incoherent processes. 2DES is rapidly maturing and has already found numerous applications, including studies of photosynthetic energy transfer and photochemical reactions and many-body interactions in nanostructured materials. Many systems of interest contain electronic transitions spanning the ultraviolet to the near infrared and beyond. Most 2DES measurements to date have explored a relatively small frequency range. We discuss the challenges of implementing 2DES and compare and contrast different approaches in terms of their information content, ease of implementation, and potential for broadband measurements.
- Publication:
-
Annual Review of Physical Chemistry
- Pub Date:
- April 2015
- DOI:
- Bibcode:
- 2015ARPC...66..667F