Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field
Abstract
Two-dimensional (2D) semiconductors have emerged as promising candidates for various optoelectronic devices especially electroluminescent (EL) devices. However, progress has been hampered by many challenges including metal contacts and injection, transport, and confinement of carriers due to small sizes of materials and the lack of proper double heterostructures. Here, we propose and demonstrate an alternative approach to conventional current injection devices. We take advantage of large exciton binding energies in 2D materials using impact generation of excitons through an alternating electric field, without requiring metal contacts to 2D materials. The conversion efficiency, defined as the ratio of the emitted photons to the preexisting carriers, can reach 16% at room temperature. In addition, we demonstrate the first multiwavelength 2D EL device, simultaneously operating at three wavelengths from red to near-infrared. Our approach provides an alternative to conventional current-based devices and could unleash the great potential of 2D materials for EL devices. Electroluminescence devices based on 2D monolayer semiconductors are driven by an alternating field without carrier injection.
- Publication:
-
Science Advances
- Pub Date:
- February 2022
- DOI:
- Bibcode:
- 2022SciA....8.5134F