Computational Inverse Method for Constructing Spaces of Quantum Models from Wave Functions
Abstract
Traditional computational methods for studying quantum many-body systems are "forward methods," which take quantum models, i.e., Hamiltonians, as input and produce ground states as output. However, such forward methods often limit one's perspective to a small fraction of the space of possible Hamiltonians. We introduce an alternative computational "inverse method," the eigenstate-to-Hamiltonian construction (EHC), that allows us to better understand the vast space of quantum models describing strongly correlated systems. EHC takes as input a wave function |ψT⟩ and produces as output Hamiltonians for which |ψT⟩ is an eigenstate. This is accomplished by computing the quantum covariance matrix, a quantum mechanical generalization of a classical covariance matrix. EHC is widely applicable to a number of models and, in this work, we consider seven different examples. Using the EHC method, we construct a parent Hamiltonian with a new type of antiferromagnetic ground state, a parent Hamiltonian with two different targeted degenerate ground states, and large classes of parent Hamiltonians with the same ground states as well-known quantum models, such as the Majumdar-Ghosh model, the XX chain, the Heisenberg chain, the Kitaev chain, and a 2D BdG model. EHC gives an alternative inverse approach for studying quantum many-body phenomena.
- Publication:
-
Physical Review X
- Pub Date:
- July 2018
- DOI:
- 10.1103/PhysRevX.8.031029
- arXiv:
- arXiv:1802.01590
- Bibcode:
- 2018PhRvX...8c1029C
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Quantum Physics
- E-Print:
- 13 pages, 7 figures, 1 table