Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions
Abstract
Van der Waals (vdW) heterojunctions, based on two-dimensional (2D) materials, have great potential for the development of ecofriendly and high-efficiency nanodevices, which shows valuable applications as photovoltaic cells, photodetectors, etc. However, the coexistence of photoelectric conversion and storage in a single device has not been achieved until now. Here, we demonstrate a simple strategy to construct a vdW p -n junction between a WSe2 layer and quasi-2D electron gas. After an optical illumination, the device stores the light-generated carriers for up to seven days, and then releases a very large photocurrent of 2.9 mA with bias voltage applied in darkness; this is referred to as chargeable photoconductivity (CPC), which completely differs from any previously observed photoelectric phenomenon. In normal photoconductivity, the recombination of electron-hole pairs occurs at the end of their lifetime; in contrast, infinite-lifetime photocarriers can be generated and stored in CPC devices without recombination. The photoelectric conversion and storage are completely self-excited during the charging process. The ratio between currents in full- and empty-photocarrier states below the critical temperature reaches as high as 109 , with an external quantum efficiency of 93.8% during optical charging. A theoretical model developed to explain the mechanism of this effect is in good agreement with the experimental data. This work paves a path toward the high-efficiency devices for photoelectric conversion and storage.
- Publication:
-
Physical Review Letters
- Pub Date:
- November 2021
- DOI:
- 10.1103/PhysRevLett.127.217401
- Bibcode:
- 2021PhRvL.127u7401J