Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems
Abstract
One of the unique features of non-Hermitian Hamiltonians is the non-Hermitian skin effect, namely, that the eigenstates are exponentially localized at the boundary of the system. For open quantum systems, a short-time evolution can often be well described by the effective non-Hermitian Hamiltonians, while long-time dynamics calls for the Lindblad master equations, in which the Liouvillian superoperators generate time evolution. In this Letter, we find that Liouvillian superoperators can exhibit the non-Hermitian skin effect, and uncover its unexpected physical consequences. It is shown that the non-Hermitian skin effect dramatically shapes the long-time dynamics, such that the damping in a class of open quantum systems is algebraic under periodic boundary conditions but exponential under open boundary conditions. Moreover, the non-Hermitian skin effect and non-Bloch bands cause a chiral damping with a sharp wave front. These phenomena are beyond the effective non-Hermitian Hamiltonians; instead, they belong to the non-Hermitian physics of full-fledged open quantum dynamics.
- Publication:
-
Physical Review Letters
- Pub Date:
- October 2019
- DOI:
- 10.1103/PhysRevLett.123.170401
- Bibcode:
- 2019PhRvL.123q0401S