Temporal Order in Periodically Driven Spins in Star-Shaped Clusters
Abstract
We experimentally study the response of star-shaped clusters of initially unentangled N =4 , 10, and 37 nuclear spin-1 /2 moments to an inexact π -pulse sequence and show that an Ising coupling between the center and the satellite spins results in robust period-2 magnetization oscillations. The period is stable against bath effects, but the amplitude decays with a timescale that depends on the inexactness of the pulse. Simulations reveal a semiclassical picture in which the rigidity of the period is due to a randomizing effect of the Larmor precession under the magnetization of surrounding spins. The timescales with stable periodicity increase with net initial magnetization, even in the presence of perturbations, indicating a robust temporal ordered phase for large systems with finite magnetization per spin.
- Publication:
-
Physical Review Letters
- Pub Date:
- May 2018
- DOI:
- Bibcode:
- 2018PhRvL.120r0602P