Classification of topological insulators and superconductors in three spatial dimensions
Abstract
We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral (px±ipy) -wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to “weak pairing”) and topologically trivial (analogous to “strong pairing”) 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.
- Publication:
-
Physical Review B
- Pub Date:
- November 2008
- DOI:
- arXiv:
- arXiv:0803.2786
- Bibcode:
- 2008PhRvB..78s5125S
- Keywords:
-
- 73.43.-f;
- 74.20.Rp;
- 74.45.+c;
- 72.25.Dc;
- Quantum Hall effects;
- Pairing symmetries;
- Proximity effects;
- Andreev effect;
- SN and SNS junctions;
- Spin polarized transport in semiconductors;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Strongly Correlated Electrons
- E-Print:
- 20 pages. Changed title, added two tables