Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs
Abstract
We present two realistic entanglement concentration protocols (ECPs) for pure partially entangled photons. A partially entangled photon pair can be concentrated to a maximally entangled pair with only an ancillary single photon with a certain probability, while the conventional ECPs require two copies of partially entangled pairs at least. Our first protocol is implemented with linear optics and the second protocol is implemented with cross-Kerr-nonlinearities. Compared with other ECPs, they do not need to know the accurate coefficients of the initial state. With linear optics, it is feasible with current experiments. With cross-Kerr-nonlinearities, it does not require sophisticated single-photon detectors and can be repeated to get a higher success probability. Moreover, the second protocol can get the higher entanglement transformation efficiency and it may be the most economical protocol by far. Meanwhile, both protocols are more suitable for multiphoton system concentration because they need less operations and classical communications. All these advantages make the two protocols useful in current long-distance quantum communications.
- Publication:
-
Physical Review A
- Pub Date:
- January 2012
- DOI:
- 10.1103/PhysRevA.85.012307
- arXiv:
- arXiv:1202.2190
- Bibcode:
- 2012PhRvA..85a2307S
- Keywords:
-
- 03.67.Pp;
- 03.67.Mn;
- 03.67.Hk;
- 42.50.-p;
- Quantum error correction and other methods for protection against decoherence;
- Entanglement production characterization and manipulation;
- Quantum communication;
- Quantum optics;
- Quantum Physics
- E-Print:
- Physical Review A 85, 012307 (2012)