Two-photon controlled-phase gates enabled by photonic dimers
Abstract
Photons are appealing as flying quantum bits due to their low-noise, long coherence times, light-speed transmission, and ease of manipulation at the single-qubit level using standard optical components such as beam splitters and waveguides. The challenge in optical quantum information processing has been the realization of two-qubit gates for photonic qubits due to the lack of highly efficient optical Kerr nonlinearities at the single-photon level. To date, only probabilistic two-qubit photonic controlled-phase gates based on linear optics and projective measurement using photon detectors have been demonstrated. Here we show that a high-fidelity frequency-encoded deterministic two-photon controlled-phase gate can be achieved by exploiting the strong photon-photon correlation enabled by photonic dimers, and the unique nonreciprocal photonic propagation in chiral quantum nanophotonic systems.
- Publication:
-
Physical Review A
- Pub Date:
- May 2021
- DOI:
- 10.1103/PhysRevA.103.052610
- Bibcode:
- 2021PhRvA.103e2610C