Distillation of lossy hyperentangled states
Abstract
Hyperentanglement has a higher information density than conventional single-degree-of-freedom entanglement, which has attracted much attention due to its fascinating applications in quantum communication. However, since the inevitable interactions between quantum entangled systems and the environment will drive hyperentangled systems into less hyperentangled states or even mixed hyperentangled states, the efficiency and security of quantum communication will be greatly depressed. The currently existing distillation protocols are not universal, i.e., they only work for the lossy hyperentangled states in specific systems. In this paper, based on local positive-operator-valued measures (POVMs), we present a distillation protocol for lossy hyperentangled photonic Bell and Greenberger-Horne-Zeilinger (GHZ) states. The intrinsic property of our protocol is twofold, i.e., the POVM nature of the protocol guarantees that the protocol is a universal one, and the distillation operation on only one of the two degrees of freedom (DOFs) can enhance the fidelity of the system in both DOFs. Furthermore, in the implementation level, our hyperentanglement distillation protocol (HEDP) has other two merits: no auxiliary local entanglement resources and sophisticated single-photon detectors are required, and only one copy of the lossy state will be operated in each distillation round, which show that our HEDPs are relatively simple and feasible.
- Publication:
-
Physical Review A
- Pub Date:
- August 2020
- DOI:
- Bibcode:
- 2020PhRvA.102b2425C