Axial-Vector Vertex in Spinor Electrodynamics
Abstract
Working within the framework of perturbation theory, we show that the axial-vector vertex in spinor electrodynamics has anomalous properties which disagree with those found by the formal manipulation of field equations. Specifically, because of the presence of closed-loop "triangle diagrams," the divergence of axial-vector current is not the usual expression calculated from the field equations, and the axial-vector current does not satisfy the usual Ward identity. One consequence is that, even after the external-line wave-function renormalizations are made, the axial-vector vertex is still divergent in fourth- (and higher-) order perturbation theory. A corollary is that the radiative corrections to νll elastic scattering in the local current-current theory diverge in fourth (and higher) order. A second consequence is that, in massless electrodynamics, despite the fact that the theory is invariant under γ5 tranformations, the axial-vector current is not conserved. In an Appendix we demonstrate the uniqueness of the triangle diagrams, and discuss a possible connection between our results and the π0-->2γ and η-->2γ decays. In particular, we argue that as a result of triangle diagrams, the equations expressing partial conservation of axial-vector current (PCAC) for the neutral members of the axial-vector-current octet must be modified in a well-defined manner, which completely alters the PCAC predictions for the π0 and the η two-photon decays.
- Publication:
-
Physical Review
- Pub Date:
- January 1969
- DOI:
- Bibcode:
- 1969PhRv..177.2426A