Trapped-Ion Quantum Computer with Robust Entangling Gates and Quantum Coherent Feedback
Abstract
Quantum computers are expected to achieve a significant speed-up over classical computers in solving a range of computational problems. Chains of ions held in a linear Paul trap are a promising platform for constructing such quantum computers, due to their long coherence times and high quality of control. Here, we report on the construction of a small five-qubit universal quantum computer using 88Sr + ions in a radio-frequency (rf) trap. All basic operations, including initialization, quantum logic operations, and readout, are performed with high fidelity. Selective two-qubit and single-qubit gates, implemented using a narrow-line-width laser, comprise a universal gate set, allowing realization of any unitary on the quantum register. We review the main experimental tools and describe in detail unique aspects of the computer: the use of robust entangling gates and the development of a quantum coherent feedback system through electron-multiplying CCD camera acquisition. The latter is necessary for carrying out quantum error-correction protocols in future experiments.
- Publication:
-
PRX Quantum
- Pub Date:
- March 2022
- DOI:
- 10.1103/PRXQuantum.3.010347
- arXiv:
- arXiv:2111.04155
- Bibcode:
- 2022PRXQ....3a0347M
- Keywords:
-
- Quantum Physics;
- Physics - Atomic Physics