Multidimensional spectroscopy of magneto-excitons at high magnetic fields
Abstract
We perform two-dimensional Fourier transform spectroscopy on magneto-excitons in GaAs at magnetic fields and observe Zeeman splitting of the excitons. The Zeeman components are clearly resolved as separate peaks due to the two-dimensional nature of the spectra, leading to a more accurate measurement of the Zeeman splitting and the Landé g factors. Quantum coherent coupling between Zeeman components is observed using polarization dependent one-quantum two-dimensional spectroscopy. We use two-quantum two-dimensional spectroscopy to investigate higher four-particle correlations at high magnetic fields and reveal the role of the Zeeman splitting on the two-quantum transitions. The experimental two-dimensional spectra are simulated using the optical Bloch equations, where many-body effects are included phenomenologically.
- Publication:
-
Journal of Chemical Physics
- Pub Date:
- November 2021
- DOI:
- Bibcode:
- 2021JChPh.155t4201M