Observation of excited states in a graphene quantum dot
Abstract
We demonstrate that excited states in single-layer graphene quantum dots can be detected via direct transport experiments. Coulomb diamond measurements show distinct features of sequential tunneling through an excited state. Moreover, the onset of inelastic cotunneling in the diamond region could be detected. For low magnetic fields, the positions of the single-particle energy levels fluctuate on the scale of a flux quantum penetrating the dot area. For higher magnetic fields, the transition to the formation of Landau levels is observed. Estimates based on the linear energy-momentum relation of graphene give carrier numbers of the order of 10 for our device.
- Publication:
-
Applied Physics Letters
- Pub Date:
- January 2009
- DOI:
- arXiv:
- arXiv:0807.2710
- Bibcode:
- 2009ApPhL..94a2107S
- Keywords:
-
- 71.10.Li;
- 73.21.La;
- 73.40.Gk;
- 71.70.Di;
- 73.63.Kv;
- Excited states and pairing interactions in model systems;
- Quantum dots;
- Tunneling;
- Landau levels;
- Condensed Matter - Mesoscale and Nanoscale Physics
- E-Print:
- 3 pages, 3 figures