Spin-dependent thermoelectric effects in graphene-based spin valves
Abstract
Using first-principles calculations combined with non-equilibrium Green's function (NEGF), we investigate spin-dependent thermoelectric effects in a spin valve which consists of zigzag graphene nanoribbon (ZGNR) electrodes with different magnetic configurations. We find that electron transport properties in the ZGNR-based spin valve are strongly dependent on the magnetic configurations. As a result, with a temperature bias, thermally-induced currents can be controlled by switching the magnetic configurations, indicating a thermal magnetoresistance (MR) effect. Moreover, based on the linear response assumption, our study shows that the remarkably different Seebeck coefficients in the various magnetic configurations lead to a very large and controllable magneto Seebeck ratio. In addition, we evaluate thermoelectric properties, such as the power factor, electron thermal conductance and figure of merit (ZT), of the ZGNR-based spin valve. Our results indicate that the power factor and the electron thermal conductance are strongly related to the transmission gap and electron-hole symmetry of the transmission spectrum. Moreover, the value of ZT can reach 0.15 at room temperature without considering phonon scattering. In addition, we investigate the thermally-controlled magnetic distributions in the ZGNR-based spin valve and find that the magnetic distribution, especially the local magnetic moment around the Ni atom, is strongly related to the thermal bias. The very large, multi-valued and controllable thermal magnetoresistance and Seebeck effects indicate the strong potential of ZGNR-based spin valves for extremely low-power consuming spin caloritronics applications. The thermally-controlled magnetic moment in the ZGNR-based spin valve indicates its possible applications for information storage.
- Publication:
-
Nanoscale
- Pub Date:
- December 2012
- DOI:
- Bibcode:
- 2012Nanos...5..200Z