Efficiency limit of transition metal dichalcogenide solar cells
Abstract
Ultrathin transition metal dichalcogenide (TMD) films show great promise as absorber materials in high-specific-power (i.e., high-power-per-weight) solar cells, due to their high optical absorption, desirable band gaps, and self-passivated surfaces. However, the ultimate performance limits of TMD solar cells remain unknown today. Here, we establish the efficiency limits of multilayer (≥5 nm-thick) MoS2, MoSe2, WS2, and WSe2 solar cells under AM 1.5 G illumination as a function of TMD film thickness and material quality. We use an extended version of the detailed balance method which includes Auger and defect-assisted Shockley-Read-Hall recombination mechanisms in addition to radiative losses, calculated from measured optical absorption spectra. We demonstrate that single-junction solar cells with TMD films as thin as 50 nm could in practice achieve up to 25% power conversion efficiency with the currently available material quality, making them an excellent choice for high-specific-power photovoltaics.
- Publication:
-
Communications Physics
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2307.13166
- Bibcode:
- 2023CmPhy...6..367N
- Keywords:
-
- Physics - Applied Physics
- E-Print:
- 24 pages