Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides
Abstract
Two-dimensional transition metal dichalcogenide nanoribbons are touted as the future extreme device downscaling for advanced logic and memory devices but remain a formidable synthetic challenge. Here, we demonstrate a ledge-directed epitaxy (LDE) of dense arrays of continuous, self-aligned, monolayer and single-crystalline MoS2 nanoribbons on β-gallium (III) oxide (β-Ga2O3) (100) substrates. LDE MoS2 nanoribbons have spatial uniformity over a long range and transport characteristics on par with those seen in exfoliated benchmarks. Prototype MoS2-nanoribbon-based field-effect transistors exhibit high on/off ratios of 108 and an averaged room temperature electron mobility of 65 cm2 V‑1 s‑1. The MoS2 nanoribbons can be readily transferred to arbitrary substrates while the underlying β-Ga2O3 can be reused after mechanical exfoliation. We further demonstrate LDE as a versatile epitaxy platform for the growth of p-type WSe2 nanoribbons and lateral heterostructures made of p-WSe2 and n-MoS2 nanoribbons for futuristic electronics applications.
- Publication:
-
Nature Materials
- Pub Date:
- December 2020
- DOI:
- 10.1038/s41563-020-0795-4
- Bibcode:
- 2020NatMa..19.1300A