Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator
Abstract
A three-dimensional (3D) topological insulator (TI) is a quantum state of matter with a gapped insulating bulk yet a conducting surface hosting topologically protected gapless surface states. One of the most distinct electronic transport signatures predicted for such topological surface states (TSS) is a well-defined half-integer quantum Hall effect (QHE) in a magnetic field, where the surface Hall conductivities become quantized in units of (1/2)e2/h (e being the electron charge, h the Planck constant) concomitant with vanishing resistance. Here, we observe a well-developed QHE arising from TSS in an intrinsic TI of BiSbTeSe2. Our samples exhibit surface-dominated conduction even close to room temperature, whereas the bulk conduction is negligible. At low temperatures and high magnetic fields perpendicular to the top and bottom surfaces, we observe well-developed integer quantized Hall plateaux, where the two parallel surfaces each contribute a half-integer e2/h quantized Hall conductance, accompanied by vanishing longitudinal resistance. When the bottom surface is gated to match the top surface in carrier density, only odd integer QH plateaux are observed, representing a half-integer QHE of two degenerate Dirac gases. This system provides an excellent platform to pursue a plethora of exotic physics and novel device applications predicted for TIs, ranging from magnetic monopoles and Majorana particles to dissipationless electronics and fault-tolerant quantum computers.
- Publication:
-
Nature Physics
- Pub Date:
- December 2014
- DOI:
- arXiv:
- arXiv:1409.3778
- Bibcode:
- 2014NatPh..10..956X
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Materials Science
- E-Print:
- 23 pages, 14 figures, accepted by Nature Physics