Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution
Abstract
Gate operations in a quantum information processor are generally realized by tailoring specific periods of free and driven evolution of a quantum system. Unwanted environmental noise, which may in principle be distinct during these two periods, acts to decohere the system and increase the gate error rate. Although there has been significant progress characterizing noise processes during free evolution, the corresponding driven-evolution case is more challenging as the noise being probed is also extant during the characterization protocol. Here we demonstrate the noise spectroscopy (0.1-200 MHz) of a superconducting flux qubit during driven evolution by using a robust spin-locking pulse sequence to measure relaxation (T1ρ) in the rotating frame. In the case of flux noise, we resolve spectral features due to coherent fluctuators, and further identify a signature of the 1 MHz defect in a time-domain spin-echo experiment. The driven-evolution noise spectroscopy complements free-evolution methods, enabling the means to characterize and distinguish various noise processes relevant for universal quantum control.
- Publication:
-
Nature Communications
- Pub Date:
- August 2013
- DOI:
- 10.1038/ncomms3337
- arXiv:
- arXiv:1508.06436
- Bibcode:
- 2013NatCo...4.2337Y
- Keywords:
-
- Quantum Physics
- E-Print:
- Nature Communications 4, 2337 (2013)