New era of LSST data: Estimating the physical properties of main-sequence galaxies
Abstract
The main goal of the Vera C. Rubin observatory is to perform the 10 year Legacy Survey of Space and Time (LSST). This future state-of-art observatory will open the new window to study billions of galaxies from Local Universe as well as the high redshift objects. In this work we employ simulated LSST observations and uncertainties, based on the 50 385 real galaxies within the redshift range 0 < z < 2.5 from the ELAIS-N1 and COSMOS fields of the Herschel Extragalactic Legacy Project (HELP) survey, to constrain the physical properties of normal star-forming galaxies, such as their star formation rate (SFR), stellar mass (Mstar), and dust luminosity (Ldust). We fit their spectral energy distributions (SEDs) using the Code Investigating GALaxy Emission (CIGALE). The stellar masses estimated based on the LSST measurements agree with the full UV to far-IR SED, while we obtain a clear overestimate of the dust-related properties (SFR, Ldust) estimated with LSST. We investigate the cause of this result and find that it is necessary to employ auxiliary rest-frame mid-IR observations, simulated UV observations, or the far-UV attenuation (AFUV)-Mstar relation to correct for the overestimate.
- Publication:
-
Resolving the Rise and Fall of Star Formation in Galaxies
- Pub Date:
- 2023
- DOI:
- 10.1017/S1743921322004793
- Bibcode:
- 2023IAUS..373..271R
- Keywords:
-
- SED;
- LSST;
- Extragalactic Astrophysics;
- SFR