Multi-component MHD model for hydrogen-helium extended envelope of hot Jupiter
Abstract
We describe a numerical model of hot Jupiter extended envelope that interacts with stellar wind. Our model is based on approximation of multi-component magnetic hydrodynamic. The processes of ionization, recombination, dissosiation and chemical reactions in hydrogen-helium envelope are taken into account. In particular, the ionization of neutral hydrogen atoms takes place due to processes of photo-ionization, charge-exchange and thermal collisions. Further, this model is supposed to be used for research on biomarkers' dynamics in extended envelopes of hot Jupiters.
- Publication:
-
The Predictive Power of Computational Astrophysics as a Discover Tool
- Pub Date:
- January 2023
- DOI:
- Bibcode:
- 2023IAUS..362..167G
- Keywords:
-
- magnetic hydrodynamics (MHD);
- hot Jupiters;
- chemical reactions