Machine learning for the extragalactic astronomy educational manual
Abstract
We evaluated a new approach to the automated morphological classification of large galaxy samples based on the supervised machine learning techniques (Naive Bayes, Random Forest, Support Vector Machine, Logistic Regression, and k-Nearest Neighbours) and Deep Learning using the Python programming language. A representative sample of ∼315000 SDSS DR9 galaxies at z < 0.1 and stellar magnitudes r < 17.7m was considered as a target sample of galaxies with indeterminate morphological types. Classical machine learning methods were used to binary morphologically classification of galaxies into early and late types (96.4% with Support Vector Machine). Deep machine learning methods were used to classify images of galaxies into five visual types (completely rounded, rounded in-between, smooth cigar-shaped, edge-on, and spiral) with the Xception architecture (94% accuracy for four classes and 88% for cigar-like galaxies). These results created a basis for educational manual on the processing of large data sets in the Python programming language, which is intended for students of the Ukrainian universities.
- Publication:
-
Education and Heritage in the Era of Big Data in Astronomy
- Pub Date:
- 2021
- DOI:
- Bibcode:
- 2021IAUS..367..461V
- Keywords:
-
- machine learning;
- morphological galaxy classification;
- education