Spatially resolving the relics: The inferring the physics driving the quenching of massive galaxies from kinematics at z ∼ 1 and beyond
Abstract
Today's massive elliptical galaxies are primarily red-and-dead, dispersion supported ellipticals. The physical process(es) driving the shutdown or `quenching' of star formation in these galaxies remains one of the least understood aspects of galaxy formation and evolution. Although today's spiral and elliptical galaxies exhibit a clear bimodality in their structures, kinematics, and stellar populations, it may be that the quenching and structural transformation do no occur simultaneously. In this talk I will present evidence that early quiescent galaxies, observed much closer to their quenching epoch at z ∼ 1, retain significant rotational support (∼ twice as much as local ellipticals). This suggests that the mechanisms responsible for shutting down star formation do not also have to destroy ordered motion in massive galaxies; the increased dispersion support could occur subsequently via hierarchical growth and minor merging. I will discuss this evidence in conjunction with recent ALMA studies of the dramatic range in molecular gas reservoirs of recently quenched high redshift galaxies to constrain quenching models. Finally, I will discuss prospects for extending spatially resolved spectroscopic studies of galaxies immediately following quenching with JWST and eventually 30-m class telescopes.
- Publication:
-
Uncovering Early Galaxy Evolution in the ALMA and JWST Era
- Pub Date:
- 2020
- DOI:
- 10.1017/S1743921320001222
- Bibcode:
- 2020IAUS..352..267B