A unified construction of stellar evolution and chemical evolution models for the multiple populations in globular clusters
Abstract
Recent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.
- Publication:
-
Star Clusters: From the Milky Way to the Early Universe
- Pub Date:
- 2020
- DOI:
- Bibcode:
- 2020IAUS..351..302J
- Keywords:
-
- globular clusters;
- multiple populations;
- horizontal-branch