The possible origin of high frequency quasi-periodic oscillations in low mass X-ray binaries
Abstract
We summarize our model that high frequency quasi-periodic oscillations (QPOs) both in the neutron star low mass X-ray binaries (NS-LMXBs) and black hole LMXBs may originate from magnetohydrodynamic (MHD) waves. Based on the MHD model in NS-LMXBs, the explanation of the parallel tracks is presented. The slowly varying effective surface magnetic field of a NS leads to the shift of parallel tracks of QPOs in NS-LMXBs. In the study of kilohertz (kHz) QPOs in NS-LMXBs, we obtain a simple power-law relation between the kHz QPO frequencies and the combined parameter of accretion rate and the effective surface magnetic field. Based on the MHD model in BH-LMXBs, we suggest that two stable modes of the Alfvén waves in the accretion disks with a toroidal magnetic field may lead to the double high frequency QPOs. This model, in which the effect of the general relativity in BH-LMXBs is considered, naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs and the relation between the BH mass and QPO frequency.
- Publication:
-
High-mass X-ray Binaries: Illuminating the Passage from Massive Binaries to Merging Compact Objects
- Pub Date:
- December 2019
- DOI:
- Bibcode:
- 2019IAUS..346..277S
- Keywords:
-
- accretion;
- accretion disks;
- MHD;
- X-rays: binaries