Aspherical Supernovae and Oblique Shock Breakout
Abstract
In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.
- Publication:
-
Supernova 1987A:30 years later - Cosmic Rays and Nuclei from Supernovae and their Aftermaths
- Pub Date:
- February 2017
- DOI:
- Bibcode:
- 2017IAUS..331...96A
- Keywords:
-
- supernovae: general;
- hydrodynamics;
- shock waves