Cluster Physics & Evolution
Abstract
Recent advances in X-ray and microwave observations have provided unprecedented insights into the structure and evolution of the hot X-ray emitting plasma from their cores to the virialization region in outskirts of galaxy clusters. Recent Sunyaev-Zel'dovich (SZ) surveys (ACT, Planck, SPT) have provided new cluster catalogs, significantly expanding coverage of the mass-redshift plane, while Chandra and XMM-Newton X-ray follow-up programs have improved our understanding of cluster physics and evolution as well as the surveys themselves. However, the current cluster-based cosmological constraints are still limited by uncertainties in cluster astrophysics. In order to exploit the statistical power of the current and upcoming X-ray and microwave cluster surveys, it is critical to improve our understanding of the structure and evolution of the hot X-ray emitting intracluster medium (ICM). In this session, we discussed recent advances in observations and simulations of galaxy clusters, with highlights on (i) the evolution of ICM profiles and scaling relations, (ii) physical processes operating in the outskirts of galaxy clusters, and (iii) impact of mergers on the ICM structure in groups and clusters.
- Publication:
-
IAU Focus Meeting
- Pub Date:
- 2016
- DOI:
- Bibcode:
- 2016IAUFM..29B..70N
- Keywords:
-
- X-rays: galaxies: clusters;
- galaxies: clusters: general;
- galaxies: interactions