Formation of young massive clusters from turbulent molecular clouds
Abstract
We simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = -1.73. The superposition of mass functions turn out to have a power-law slope of < -2. The mass of the most massive cluster formed from a single molecular cloud with mass M g scales with 6.1 M 0.51 g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s-1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.
- Publication:
-
Formation, Evolution, and Survival of Massive Star Clusters
- Pub Date:
- March 2017
- DOI:
- Bibcode:
- 2017IAUS..316...25F
- Keywords:
-
- star clusters;
- young massive clusters;
- open clusters;
- numerical simulation