Evolutionary models of rotating dense stellar systems: challenges in software and hardware
Abstract
We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of initial axisymmetry due to rotation. Central black hole seeds are alternatively included in our models, and black hole growth due to consumption of stellar matter is simulated until the central potential dominates the kinematics in the core. Goal is to study the long-term evolution (~ Gyr) of relaxed dense stellar systems, which deviate from spherical symmetry, their morphology and final kinematics. With this purpose, we developed a 2D Fokker-Planck analytical code, which results we confirm by detailed N-Body techniques, applying a high performance code, developed for GPU machines. We compare our models to available observations of galactic rotating globular clusters, and conclude that initial rotation modifies significantly the shape and lifetime of these systems, and can not be neglected in studying the evolution of globular clusters, and the galaxy itself.
- Publication:
-
Star Clusters and Black Holes in Galaxies across Cosmic Time
- Pub Date:
- February 2016
- DOI:
- Bibcode:
- 2016IAUS..312..239F
- Keywords:
-
- methods: numerical;
- gravitation;
- stellar dynamics;
- black hole;
- globular clusters: general;
- galactic nuclei