Stellar Magnetic Dynamos and Activity Cycles
Abstract
Using a new uniform sample of 824 solar and late-type stars with measured X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity that is believed to be a probe of the underlying stellar dynamo. Using an unbiased subset of the sample we calculate the power law slope of the unsaturated regime of the activity - rotation relationship as LX / Lbol ~ Roβ , where β = - 2.70 +/- 0.13. This is inconsistent with the canonical β = - 2 slope to a confidence of 5σ and argues for an interface-type dynamo. We map out three regimes of coronal emission as a function of stellar mass and age, using the empirical saturation threshold and theoretical super-saturation thresholds. We find that the empirical saturation timescale is well correlated with the time at which stars transition from the rapidly rotating convective sequence to the slowly rotating interface sequence in stellar spin-down models. This may be hinting at fundamental changes in the underlying stellar dynamo or internal structure. We also present the first discovery of an X-ray unsaturated, fully convective M star, which may be hinting at an underlying rotation - activity relationship in fully convective stars hitherto not observed. Finally we present early results from a blind search for stellar X-ray cycles that can place valuable constraints on the underlying ubiquity of solar-like activity cycles.
- Publication:
-
Magnetic Fields throughout Stellar Evolution
- Pub Date:
- August 2014
- DOI:
- 10.1017/S1743921314002038
- arXiv:
- arXiv:1309.6970
- Bibcode:
- 2014IAUS..302..190W
- Keywords:
-
- stars: activity;
- X-rays: stars;
- stars: late-type;
- stars: coronae;
- stars: magnetic fields;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 4 pages, 2 figures, proceedings for IAU Symposium 302: Magnetic Fields Throughout Stellar Evolution