Observation of the prominence cavity region using slitless eclipse flash spectra and space borne EUV filtergrams
Abstract
We used total solar eclipse free of parasitic light for studying the prominence to corona interface, and the corresponding cavity in the context of the coronal physics. We analysed the visible continuum between the prominences to directly look at the electron density. We demonstrate some enhanced heating in the cavity region. Some similarities with the interface regions are shown: the photosphere to the chromosphere and the prominence to the corona interface. The optically thin neutral Helium at 4713 Å and the singly ionized Helium 4686 Å Paschen α lines are considered. We summed 80 slitless visible eclipse flash spectra that we compare with simultaneously obtained EUV SWAP/Proba2 174 Å images of ESA and AIA/SDO 171Å 193 Å 304 Å and 131 Å filtergrams. Intensity profiles in a radial direction are studied. We deduce the variation of the intensity ratio I(He I 4713) / I(He II 4686). Discussion: the temperature rises at the edge of the prominences. We evaluate for the first time with spectrophotometric accuracy the continuum modulations in prominence spectra. W-L intensity deficits are observed near the prominence boundaries in both eclipse spectra and in EUV images, confirming that the prominence -cavity regions correspond to a relative depression of plasma density of the surrounding corona. Conclusion: we demonstrate some enhanced heating occurring in these regions assuming hydrostatic equilibrium.
- Publication:
-
Nature of Prominences and their Role in Space Weather
- Pub Date:
- January 2014
- DOI:
- Bibcode:
- 2014IAUS..300..151B
- Keywords:
-
- flash spectra;
- corona;
- prominence;
- cavity;
- EUV lines;
- He lines