Forecasting the solar activity cycle: new insights
Abstract
Having advance knowledge of solar activity is important because the Sun's magnetic output governs space weather and impacts technologies reliant on space. However, the irregular nature of the solar cycle makes solar activity predictions a challenging task. This is best achieved through appropriately constrained solar dynamo simulations and as such the first step towards predictions is to understand the underlying physics of the solar dynamo mechanism. In Babcock-Leighton type dynamo models, the poloidal field is generated near the solar surface whereas the toroidal field is generated in the solar interior. Therefore a finite time is necessary for the coupling of the spatially segregated source layers of the dynamo. This time delay introduces a memory in the dynamo mechanism which allows forecasting of future solar activity. Here we discuss how this forecasting ability of the solar cycle is affected by downward turbulent pumping of magnetic flux. With significant turbulent pumping the memory of the dynamo is severely degraded and thus long term prediction of the solar cycle is not possible; only a short term prediction of the next cycle peak may be possible based on observational data assimilation at the previous cycle minimum.
- Publication:
-
Solar and Astrophysical Dynamos and Magnetic Activity
- Pub Date:
- July 2013
- DOI:
- arXiv:
- arXiv:1312.7613
- Bibcode:
- 2013IAUS..294..439N
- Keywords:
-
- Sun: activity;
- Sun: magnetic fields;
- sunspots;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Proc. of IAU Symposium 294