Detecting Gas Outflows in Type-2 AGNs Selected from the Sloan Digital Sky Survey
Abstract
Energetic outflow from active galactic nuclei (AGNs) may play a critical role in galaxy evolution (e.g., Silk & Rees 1998). We present a velocity diagnostic for detecting gas outflow in the narrow-line region of Type-2 AGNs using line-of-sight velocity offsets of the [O iii] λ5007 and Hα emission lines with respect to the systemic velocity of stars in host galaxies (See Figure 1). We apply the diagnostics to nearby galaxies at 0.02 < z < 0.05, 3775 AGN-host and 907 star-forming galaxies as a comparison sample, which are selected from the Sloan Digital Sky Survey DR7. After obtaining a best-fit stellar population model for the continuum and a systemic velocity based on stellar lines, we subtract the stellar component to measure velocity offsets of each emission line. We find a sample of 169 AGN-host galaxies with outflow signatures, displaying a larger velocity shift of [O iii] than that of Hα, as expected in a decelerating outflow model (Komossa et al. 2008). We find that the offset velocity of [O iii] increases with Eddington ratio, suggesting that gas outflow depends on the energetics of AGN.
- Publication:
-
Molecular Gas, Dust, and Star Formation in Galaxies
- Pub Date:
- March 2013
- DOI:
- 10.1017/S1743921313001737
- Bibcode:
- 2013IAUS..292..372B
- Keywords:
-
- galaxies: active;
- galaxies: ISM