3D Core-Collapse Supernova Simulations: Neutron Star Kicks and Nickel Distribution
Abstract
We perform a set of neutrino-driven core-collapse supernova (CCSN) simulations studying the hydrodynamical neutron star kick mechanism in three-dimensions. Our simulations produce neutron star (NS) kick velocities in a range between ~100-600 km/s resulting mainly from the anisotropic gravitational tug by the asymmetric mass distribution behind the supernova shock. This stochastic kick mechanism suggests that a NS kick velocity of more than 1000 km/s may as well be possible. An enhanced production of heavy elements in the direction roughly opposite to the NS recoil direction is also observed as a result of the asymmetric explosion. This large scale asymmetry might be detectable and can be used to constrain the NS kick mechanism.
- Publication:
-
Death of Massive Stars: Supernovae and Gamma-Ray Bursts
- Pub Date:
- September 2012
- DOI:
- 10.1017/S1743921312012847
- Bibcode:
- 2012IAUS..279..150W
- Keywords:
-
- (stars:) supernovae: general;
- (stars:) pulsars: general