Observable signatures of dust evolution mechanisms which shape the planet forming regions
Abstract
Overdensity of dust with respect to the gas in the planet forming regions is a crucial prerequisite to form larger bodies and eventually planets. We use a state-of-the-art code to simulate dust evolution processes in gas-rich circumstellar discs, including the viscous gas evolution. We find significant deviations of the radial distribution of dust from that of the gas as early as 1-2Myr. These deviations are closely related to the efficiency of grain growth. Apparent discrepancies between dust and gas distributions are suggested by the current millimetre interferometer observations, and ALMA will allow us tointerpret any such discrepancies in the context of dust evolution.
- Publication:
-
The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution
- Pub Date:
- November 2011
- DOI:
- Bibcode:
- 2011IAUS..276..450P
- Keywords:
-
- stars: pre-main-sequence;
- circumstellar matter;
- planetary systems: protoplanetary disks;
- planets and satellites: formation