Two component relativistic acceleration and polarized radiation of the parsec-scale AGN jet
Abstract
We perform axisymmetric simulations of two-component jet acceleration using the special relativistic MHD code PLUTO (Mignone et al., 2007). The inner, thermally driven component constitutes a dilute relativistic plasma originating in a high enthalpy central corona. The second component is a Poynting-dominated wind driven by a global current system. Once a near-stationary state is reached, we solve the polarized Synchrotron radiation transport incorporating self-absorption and (internal) Faraday rotation. With this approach we obtain high-resolution radio maps and spectra that can help in the interpretation of observational data from nearby active galactic nuclei by predicting spine-sheath polarization structures and Faraday rotation gradients.
- Publication:
-
Advances in Plasma Astrophysics
- Pub Date:
- June 2011
- DOI:
- Bibcode:
- 2011IAUS..274..258P
- Keywords:
-
- galaxies: active - galaxies: jets - ISM: jets and outflows - plasmas - polarization - radiation mechanisms: non-thermal - Radiative transfer - relativity