Magnetic fractures or reconnection of type II
Abstract
The importance of reconnection in astrophysics has been widely recognized. It is instrumental in storing and releasing magnetic energy, the latter often in a dramatic fashion. A closely related process, playing in very low beta plasmas, is much less known. It is behind the acceleration of auroral particles in the low-density environment several 1000 km above the Earth. It involves the appearance of field-parallel voltages in presence of intense field-aligned currents. The underlying physical process is the release of magnetic shear stresses and conversion of the liberated magnetic energy into kinetic energy of the particles creating auroral arcs. In this process, field lines disconnect from the field anchored in the ionosphere and reconnect to other field lines. Because of the stiffness of the magnetic field, the process resembles mechanical fractures. It is typically active in the low-density magnetosphere of planets. However, it can also lead to significant energy conversion with high-energy particle production and subsequent gamma ray emissions in stellar magnetic fields, in particular of compact objects.
- Publication:
-
Advances in Plasma Astrophysics
- Pub Date:
- June 2011
- DOI:
- Bibcode:
- 2011IAUS..274...56H
- Keywords:
-
- Auroral acceleration;
- magnetosphere;
- electric currents;
- neutron stars