Carbon-enhanced metal-poor stars as probes of early Galactic nucleosynthesis
Abstract
A large fraction, between 10 and 25%, of very metal-poor stars in the Galactic halo are carbon-rich objects, with enhancements of carbon relative to iron exceeding a factor 10. The majority of these carbon-enhanced metal-poor (CEMP) stars show enhancements of heavy s-process elements and have been found to be spectroscopic binary systems. Many of their properties are well explained by the binary mass transfer scenario, in which a former asymptotic giant branch (AGB) companion star has polluted the low-mass star with its nucleosynthesis products. The same scenario predicts the existence of nitrogen-rich metal-poor (NEMP) stars, with [N/C] > 0.5, from AGB companions more massive than about 3 solar masses. In contrast to CEMP stars, however, such NEMP stars are very rare. Recent studies suggest that the high frequency of CEMP stars requires a modified initial mass function (IMF) in the early Galaxy, weighted towards intermediate-mass stars. Such models also implicitly predict a large number of NEMP stars which is not seen.
- Publication:
-
Chemical Abundances in the Universe: Connecting First Stars to Planets
- Pub Date:
- March 2010
- DOI:
- Bibcode:
- 2010IAUS..265..117P