Nonlinear analysis of decimetric solar bursts
Abstract
The solar radio emissions in the decimetric frequency range (above 1 GHz) are very rich in temporal and spectral fine structures due to nonlinear processes occurring in the magnetic structures on the corresponding active regions. In this paper we characterize the singularity spectrum, f(α), for solar bursts observed at 1.6, 2.0 and 3 GHz. We interpret our findings as evidence of inhomogeneous plasma turbulence driving the underlying plasma emission process and discuss the nonlinear multifractal approach into the context of geoeffective solar active regions.
- Publication:
-
Solar and Stellar Variability: Impact on Earth and Planets
- Pub Date:
- February 2010
- DOI:
- Bibcode:
- 2010IAUS..264..279R
- Keywords:
-
- turbulence;
- Sun: radio radiation;
- solar-terrestrial relations;
- methods: data analysis