On the Evolutionary History of Progenitors of EHBs and Related Binary Systems from their Observed Properties
Abstract
It has been shown quite recently (Morales-Rueda et al. 2003) that dB stars, extreme horizontal branch (EHB) objects in high probability all belong to binary systems. We study in detail the mass and angular momentum loss from the giant progenitors of sdB stars in an attempt to clarify why binarity must be a crucial factor in producing EHB objects. Assuming that the progenitors of EHB objects belong to binaries with initial separations of a roughly a hundred solar radii and fill in their critical Roche lobes while close to the tip of red giant branch, we have found that considerable shrinkage of the orbit can be achieved due to a combined effect of angular momentum loss from the red giant and appreciable accretion on its low mass companion on the hydrodynamical timescale of the donor, resulting in formation of helium WD with masses roughly equal to a half solar mass and thus evading the common envelope stage. A simple approximative analytical formula for mass loss rate from Roche lobe filling giant donor has been proposed depending on mass, luminosity and radius of donor.
- Publication:
-
Binary Stars as Critical Tools & Tests in Contemporary Astrophysics
- Pub Date:
- August 2007
- DOI:
- Bibcode:
- 2007IAUS..240..678P