Pipeline Reduction of Binary Light Curves from Large-Scale Surveys
Abstract
One of the most important changes in observational astronomy of the 21st Century is a rapid shift from classical object-by-object observations to extensive automatic surveys. As CCD detectors are getting better and their prices are getting lower, more and more small and medium-size observatories are refocusing their attention to detection of stellar variability through systematic sky-scanning missions. This trend is additionally powered by the success of pioneering surveys such as ASAS, DENIS, OGLE, TASS, their space counterpart Hipparcos and others. Such surveys produce massive amounts of data and it is not at all clear how these data are to be reduced and analysed. This is especially striking in the eclipsing binary (EB) field, where most frequently used tools are optimized for object-by-object analysis. A clear need for thorough, reliable and fully automated approaches to modeling and analysis of EB data is thus obvious. This task is very difficult because of limited data quality, non-uniform phase coverage and parameter degeneracy. The talk will review recent advancements in putting together semi-automatic and fully automatic pipelines for EB data processing. Automatic procedures have already been used to process the Hipparcos data, LMC/SMC observations, OGLE and ASAS catalogs etc. We shall discuss the advantages and shortcomings of these procedures and overview the current status of automatic EB modeling pipelines for the upcoming missions such as CoRoT, Kepler, Gaia and others.
- Publication:
-
Binary Stars as Critical Tools & Tests in Contemporary Astrophysics
- Pub Date:
- August 2007
- DOI:
- arXiv:
- arXiv:0706.3683
- Bibcode:
- 2007IAUS..240..217P
- Keywords:
-
- Astrophysics
- E-Print:
- 14 pages, 8 figures, S240 IAU symposium proceedings